SOA formation from the photooxidation of α-pinene: systematic exploration of the simulation of chamber data
نویسنده
چکیده
Chemical mechanisms play an important role in simulating the atmospheric chemistry of volatile organic compound oxidation. Comparison of mechanism simulations with laboratory chamber data tests our level of understanding of the prevailing chemistry as well as the dynamic processes occurring in the chamber itself. α-Pinene photooxidation is a well-studied system experimentally, for which detailed chemical mechanisms have been formulated. Here, we present the results of simulating low-NO α-pinene photooxidation experiments conducted in the Caltech chamber with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) under varying concentrations of seed particles and OH levels. Unexpectedly, experiments conducted at low and high OH levels yield the same secondary organic aerosol (SOA) growth, whereas GECKO-A predicts greater SOA growth under high OH levels. SOA formation in the chamber is a result of a competition among the rates of gas-phase oxidation to low-volatility products, wall deposition of these products, and condensation into the aerosol phase. Various processes – such as photolysis of condensed-phase products, particle-phase dimerization, and peroxy radical autoxidation – are explored to rationalize the observations. In order to explain the observed similar SOA growth at different OH levels, we conclude that vapor wall loss in the Caltech chamber is likely of order 10 s, consistent with previous experimental measurements in that chamber. We find that GECKO-A tends to overpredict the contribution to SOA of later-generation oxidation products under high-OH conditions. Moreover, we propose that autoxidation may alternatively resolve some or all of the measurement–model discrepancy, but this hypothesis cannot be confirmed until more explicit mechanisms are established for α-pinene autoxidation. The key role of the interplay among oxidation rate, product volatility, and vapor–wall deposition in chamber experiments is illustrated.
منابع مشابه
Explicit modelling of SOA formation from α-pinene photooxidation : sensitivity to vapour pressure estimation
The sensitivity of the formation of secondary organic aerosol (SOA) to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). Vapour pressures (P vap) were estimated with three commonly used struct...
متن کاملElemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer
The elemental composition of laboratory chamber secondary organic aerosol (SOA) from glyoxal uptake, α-pinene ozonolysis, isoprene photooxidation, single-ring aromatic photooxidation, and naphthalene photooxidation is evaluated using Aerodyne high-resolution time-of-flight mass spectrometer data. SOA O/C ratios range from 1.13 for glyoxal uptake experiments to 0.30–0.43 for α-pinene ozonolysis....
متن کاملThe effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions
Secondary organic aerosol (SOA) formation from photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied inorganic seed particle acidity levels at moderate relative humidity. The effect of particle acidity on SOA yield and chemical composition was examined under highand low-NOx conditions. The SOA yield (4.2–7.6 %) increased nearly linearly with the incre...
متن کاملA mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber
An Aerodyne Aerosol Mass Spectrometer (AMS) has been utilised to provide on-line measurements of the mass spectral signatures and mass size distributions of the oxidation products resulting from irradiating 1,3,5trimethylbenzene (1,3,5-TMB) and α-pinene, separately, in the presence of nitrogen oxide, nitrogen dioxide and propene in a reaction chamber. Mass spectral results indicate that both pr...
متن کاملEffect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes
Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA forma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016